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ABSTRACT 
 
In this study, flapwise bending vibration analysis of a 
tapered Timoshenko beam mounted on the 
periphery of a rotating rigid hub is performed. The 
governing differential equations of motion for pure 
bending are derived using the Hamilton’s principle 
and solved using the Differential Transform Method, 
DTM. During the derivation of the equations, effects 
of rotary inertia, shear deformation and hub radius 
are included. The computer package Mathematica is 
used to write a computer program for the resulting 
expressions and the natural frequencies are 
calculated and the mode shapes are plotted. The 
effects of the taper ratio, the rotation speed 
parameter, the hub radius parameter and the 
Timoshenko effect parameter are investigated and 
the results are compared with the open literature. 
 
Key words: Tapered beam, nonuniform beam, 
rotating Timoshenko beam, differential transform 
method 
 
INTRODUCTION  

The dynamic characteristics such as natural 
frequencies and related mode shapes, of rotating 
tapered beams are very important for the design and 
performance evaluation in several engineering 
applications including rotating machinery, helicopter 
blades, windmills, robot manipulators and spinning 
space structures. As a result, rotating tapered 
beams have been the subject of interest for many 
investigators. 

 
In spite of their importance in engineering 

applications, rotating tapered Timoshenko beam 
problems have received less attention than rotating 
uniform or tapered Euler-Bernoulli beam problems. 
Because of the complexity of the problem, an exact 
solution is impossible and many approximate 
mathematical models have been developed to 
investigate the dynamic behavior of rotating tapered 
Timoshenko beams. 

 
Several different techniques such as the Galerkin 

method, the Myklestad procedure, the finite  
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differences approach, the perturbation technique, 
Bessel functions, etc.have been used for the 
analysis of tapered beams [14, 15, 18, 20, 21]. 

 
Different formulation and solution methods such 

as the matrix method, the Rayleigh-Ritz procedure, 
the Rayleigh-Southwell procedure, the Galerkin 
procedure, the finite difference scheme, the 
Myklestad method, the extended Holzer method, 
etc. have been used to consider the effect of rotation 
in beam [12, 13, 16, 17, 19, 22]. 
 
 In this paper, the flapwise bending vibration 
analysis of a rotating tapered Timoshenko beam is 
performed by using a semi analytical-numerical 
technique called the Differential Transform Method, 
DTM. The concept of this method was first 
introduced by Zhou [11] in 1986 and it was used to 
solve both linear and nonlinear initial value problems 
in electric circuit analysis. The method can deal with 
nonlinear problems so Chiou [9] applied the Taylor 
transform to solve nonlinear vibration problems. 
Additionally, the method may be used to solve both 
ordinary and partial differential equations. Jang et al. 
[7] applied the two-dimensional differential transform 
method to the solution of partial differential 
equations. Hassan [5] adopted the differential 
transformation method to solve some eigenvalue 
problems. Since previous studies have shown that 
the differential transform method is an efficient tool 
to solve non-linear or parameter varying systems, 
recently it has gained much attention by several 
researchers [1-4]. 
 
FORMULATION  

  The governing partial differential equations of 
motion are derived for flapwise bending vibration of a 
rotating tapered cantilever Timoshenko beam 
represented by Fig. 1. Here, a cantilever tapered 
beam of length L , which tapers to a height h  in the 
xz  plane and which is fixed at point O  to a rigid hub 
with radius R , is shown. The XYZ  axes represent a 
global orthogonal coordinate system with origin at the 
center of mass of the hub. The beam is assumed to 
be rotating at a constant angular velocity Ω . In the 
right-handed Cartesian co-ordinate system, the X-axis 
coincides with the neutral axis of the beam in the 
                                                 
2 Assosciate Professor, E-mail: kayam@itu.edu.tr  



AIAC-2005-088  Özdemir & Kaya 

2 
Ankara International Aerospace Conference 

undeflected position, the Z-axis is parallel to the axis 
of rotation (but not coincident) and the Y-axis lies in 
the plane of rotation. The principal axes of the beam 
cross-sections are, therefore, parallel to Y and Z 
directions, respectively.For this model, the beam 
material is homogeneous and isotropic. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 1. Configuration of a rotating Timoshenko 
beam that tapers in the xz  plane 
 

The Hamilton’s principle is used to derive the 
following differential equations of motion. 
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 Here ρ  is the material density, A  is the cross 
sectional area, I  is the second moment of area of 
the beam cross section about the x  axis, k  is the 
shear correction factor, Aρ  is the mass per unit 
length, EI  and kGA  are the flexural rigidity and the 
shear rigidity of the beam, respectively. 
 

The boundary conditions at 0=x  and Lx =  for 
Eqs. (1) and (2) are given by  
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A sinusoidal variation of ),( txw  and ),( txθ  with 
a circular natural frequencyω  is assumed and the 
functions are approximated as  

 
( ) ( ) tiexWtxw ω=,       (5) 

 
( ) ( ) tiextx ωθθ =,       (6) 

 
Substituting Eqs. (5) and (6) into Eqs. (1) and (2), 

the equations of motion are expressed as   
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Here T  is the centrifugal force that varies along 

the spanwise direction of the beam. The expression 
for this force is 
 

( ) ( )dxxRAxT
L

x

+Ω= ∫ 2ρ         (9) 

 
The following equations can be used for a 

tapered beam 
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The subscript o  denotes a value at the left-hand 

end of the tapered beam and c  is a constant called 
the taper ratio which must be such that 1<c  
because otherwise the beam tapers to zero between 
its ends. Values of 1=n  or 2  cover the most 
practical cases because 1=n  gives linear variation 
of the area of the cross-section and cubic variation 
of the second moment of area along the length, 
whereas 2=n  are the second and fourth orders. 
Thus, a large number of solids or thin-walled cross-
sections can be represented by using the values, 

1=n  or 2=n . Young’s modulusE , shear 
modulus G  and density of the material, ρ  are 
assumed to be constant so the mass per unit length, 
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Aρ , the flexural rigidity, EI  and the shear rigidity, 
kAG  vary according to Eqs. (10) and (11) [6]. 

 
The dimensionless parameters that are used to 

simplify the equations can be given as follows [8] 
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Using the first two dimensionless parameters and 

Eq. (10), the dimensionless expression for the 
centrifugal force can be written as  

 
[

])21()1(
)21()1(

1

1

ncccncc
ncccnccMT

n

n

++++−

−++++−=
+

+

δδ

ξξδδξ
  (13) 

where  
 

)1)(2(2

22

++
Ω

=Μ
nnc
LAoρ

 

 
 Substituting Eqs. (10)-(13) into Eqs. (7) and (8), 
the general form of the dimensionless equations of 
motion for any value of n  are derived as follows 
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 The dimensionless boundary conditions are 
expressed as 
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 For a cantilever beam using Eqs.(16) and (17), 
the boundary conditions can be written as follows  
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  In this study the beam tapers in the xz  plane. 
For the case where the beam tapers linearly in one 
plane ( 1=n ), Eqs. (14) and (15) reduces to 
 

[ ]

( ) ( ) 01616

)231()1()231()1(

22

2

2

22

22

=















−−+−

+








++−−++−

θ
ξ

ξ
ξη

ξ
η
µ

ξ
δξδξ

ξ

d
dWc

d
d

s
cWcc

d
dWcccccc

d
d

(20) 

 

( ) ( )

( ) 011

1)(1

2

32223

=







−−

+−++







−

θ
ξ

ξ

θξηµ
ξ
θξ

ξ

d
dWc

s

cr
d
dc

d
d

       (21) 

 
THE DIFFERENTIAL TRANSFORM METHOD 

 The differential transform method is a 
transformation technique based on the Taylor series 
expansion and it is a useful tool to obtain analytical 
solutions of the differential equations. In this method, 
certain transformation rules are applied and the 
governing differential equations and the boundary 
conditions of the system are transformed into a set 
of algebraic equations in terms of the differential 
transforms of the original functions and the solution 
of these algebraic equations gives the desired 
solution of the problem. It is different from high-order 
Taylor series method because Taylor series method 
requires symbolic computation of the necessary 
derivatives of the data functions and is expensive for 
large orders. The differential transform method is an 
iterative procedure to obtain analytic Taylor Series 
solutions of differential equations.  
 

Consider a function ( )xf  which is analytic in a 

domain D and let 0xx =  represent any point in D. 

The function ( )xf  is then represented by a power 

series whose center is located at 0x . The differential 

transform of the function ( )xf  is given by 
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where ( )xf  is the original function and [ ]kF  is the 
transformed function. The inverse transformation is 
defined as 
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Combining Eqs. (22) and (23), we get 
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Considering Eq.(24), it is noticed that the concept 

of differential transform is derived from Taylor series 
expansion. However, the method does not evaluate 
the derivatives symbolically. 

 
In actual applications, the function ( )xf  is 

expressed by a finite series and Eq. (24) can be 
written as follows 
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small. Here, the value of m  depends on the 
convergence of the natural frequencies. 
 

Theorems that are frequently used in the 
transformation procedure are introduced in Table 1 
and theorems that are used for boundary conditions 
are introduced in Table 2. 
 
Table 1. Basic theorems of DTM 
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Table 2. DTM theorems for boundary conditions 
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FORMULATION WITH DTM 

In the solution step, the Differential Transform 
Method is applied to Eqs.(20) and (21) by using the 
theorems introduced in Table 1 and the following 
expressions are obtained. Here we remove the bar 
symbol from θ , and instead, we use θ . 
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RESULTS AND DISCUSSIONS 

 The computer package Mathematica is used to 
write a computer program for the expressions 
obtained using DTM. In order to validate the 
calculated results, comparisons with open literature 
are made and related graphics are plotted. The 
effects of the taper ratio, c , the rotation speed 
parameter, η , the Timoshenko effect parameter, 
r and the hub radius parameter, δ , are 
investigated. 
 

In Table 3, variation of the first three natural 
frequencies of a uniform beam with respect to the 
Timoshenko effect, r , and the rotation speed 
parameter, η , are intoduced and the results are 
compared with the ones in Table 3 of Ref. [8] where 
only the fundamental natural frequencies are given. 
As expected, the values of the natural frequencies 
increase when the rotation speed parameter is 
increased due to the stiffening effect. The effect of 
the rotation speed parameter can be observed better 
by examining Fig. 2 where variation of the natural 
frequencies with respect to the taper ratio, c ,and 
the rotation speed parameter, η , is shown. It can be 
noticed that in Fig. 2, the natural frequencies 
increase as the rotation speed parameter increases. 
Additionally, natural frequencies decrease as the 

taper ratio increases because increasing taper ratio 
has a softening effect resulting from the decrease of 
the cross-sectional area. 

 
As can be seen from the results of Table 3, the 

natural frequencies decrease as the Timoshenko 
effect is increased. The effect of the dimensionless 
parameter, r , can be observed better by examining 
Fig. 3 where variation of the first six natural 
frequencies with respect to the Timoshenko effect 
parameter, r  and the taper ratio, c  is given.  

 
When Figs. 2 and 3 are examined together, it is 

noticed that the nondimensional parameter, r  and 
η  have different influences on the taper ratio 
effects. As mentioned before, natural frequencies 
decrease with an increasing taper ratio. In Fig. 3, it   
is observed that this difference is more obvious for 
high order frequencies at 0=r  (Euler-Bernoulli 
beam). However, this difference vanishes as the 
Timoshenko effect increases. However, in Fig. 2, it 
is observed that the rotation speed parameter does 
not have the same vanishing effect as the 
Timoshenko effect parameter. 

 
In Table 4, variation of the first six natural 

frequencies of a tapered Timoshenko beam with 
respect to the rotation speed parameter, η , is 
introduced and the results are compared with the 
ones in Table 1 of Ref.[10]. In this study, 2r  and 2s  
correspond to η  and µ  parameters in Ref.[10].  

 
In Figure 4, variation of the first six natural 

frequencies with respect to the Timoshenko effect 
parameter, r  and hub radius parameter, δ , is 
introduced. As can be seen from the results of 
Figure 4, the hub radius parameter has an 
increasing effect on the natural frequencies. 

 
Additionally, the first four normal mode shapes of 

the rotating tapered Timoshenko beam whose 
natural frequencies are given in Table 3 are 
introduced in Fig. 5(a)-(d). 

 
Table 3. Variation of the first four natural 
frequencies with respect to the Timoshenko effect 
and rotation speed parameter ( 0=c , 32=k , 

38=GE , 0=δ ) 
 

Natural Frequencies 
0=η  4=η  r  

Present Ref[8] Present Ref[8] 
3.5161 3.5160 5.5850 5.585 

22.0338 - 24.2727 - 0 
61.6944 - 63.9640 - 
3.4998 3.4998 5.5616 5.5616
21.3540 - 23.6055 - 0.02
57.4683 - 59.8095 - 
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3.4527 3.4527 5.4952 5.4951
19.6492 - 21.9553 - 0.04 
48.8878 - 51.4808 - 
3.3788 3.3787 5.3955 5.3954
17.5467 - 19.9660 - 0.06 
40.7439 - 43.7356 - 
3.2838 3.2837 5.2749 5.2749
15.4882 - 18.0627 - 0.08 
34.3000 - 37.7312 - 
3.1738 3.1738 5.1449 5.1448
13.6606 - 16.3946 - 0.1 
29.3611 - 33.1790 - 

 
 
Table 4. Variation of the first six natural frequencies 
of a tapered Timoshenko beam with respect to the 
rotation speed parameter ( 5.0=c , 0064.02 =r , 

01958.02 =s , 0=δ  )  
 

Rotation Speed Parameters 
0=η  3=η  Natural 

Frequencies 
Present Ref[10] Present Ref[10]

1µ  3.64996 3,6500 4,88654 4,8866 

2µ  15.0218 15,0022 16,4599 16,460 

3µ  32.7840 32,785 34,4564 34,458 

4µ  53.3391 53,341 55,3555 53,358 

5µ  75.4955 - 77,8802 - 

6µ  98.1897 - 100,9190 - 
Rotation Speed Parameters 

5=η  10=η  Natural 
Frequencies 

Present Ref[10] Present Ref[10]

1µ  6,4711 6,4712 10,9905 10,991 

2µ  18,7434 18,744 26,9280 26,928 

3µ  37,2226 37,224 47,8827 47,883 

4µ  58,7281 58,730 71,9847 71,986 

5µ  81,8834 - 97,6447 - 

6µ  105,4640 - 119,8910 - 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Variation of the first six natural frequencies with 
respect to the rotation speed parameter, η , and the taper 
ratio, c .( 0=c ,                ; 25.0=c ,               ; 5.0=c , 
                ; 04.0=r , 32=k , 38=GE , 0=δ  ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Variation of the first six natural frequencies with 
respect to the Timoshenko effect, r , and the taper ratio, c . 
( 0=c ,                ; 25.0=c ,               ; 5.0=c ,                ; 

4=η , 32=k , 38=GE , 0=δ  ) 
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Figure 4. Variation of the first six natural frequencies 
with respect to the Timoshenko effect and hub 
radius ( 5.0=c , 4=η , 32=k , 38=GE , 

0=δ ,                ; 5.0=δ , 
              ; 1=δ ,                ) 
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Figure 5 (a). First normal mode shape of rotating 
tapered Timoshenko beam ( 5.0=c , 3=η , 

0064.02 =r , 01958.02 =s  ) 
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Figure 5 (b). Second normal mode shape of rotating 
tapered Timoshenko beam ( 5.0=c , 3=η , 

0064.02 =r , 01958.02 =s  ) 
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Figure 5 (c). Third normal mode shape of rotating 
tapered Timoshenko beam ( 5.0=c , 3=η , 

0064.02 =r , 01958.02 =s  ) 
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Figure 5 (d). Fourth normal mode shape of rotating 
tapered Timoshenko beam ( 5.0=c , 3=η , 

0064.02 =r , 01958.02 =s  ) 
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